[기술]게임 플레이어 모델을 위한 속성 추출과 모델 활용 사례

제목 : 게임 플레이어 모델을 위한 속성 추출과 모델 활용 사례

저자 : 윤태복, 양성일

초록 :
산업의 발전에 따라 게임에 활용되는 기술도 고도화 되고 있다. 특히, 인공지능 기술은 게임로그를 수집하고 분석하여 패턴을 추출하고 게임의 자동화와 지능화를 위하여 활용되고 있다. 이러한 게임 플레이어의 패턴은 온라인 게임에서 플레이어 매칭, 적대적 NPC의 생성, 게임 월드의 밸런싱 등 적용 범위가 넓다. 본 연구에서는 게임 플레이어의 모델 생성 방법을 제안한다. 모델 생성을 위하여 사냥, 수집, 이동, 전투, 위기관리, 제작, 상호작용 등의 속성을 정의하였으며 의사결정나무 방법을 이용하여 패턴을 추출하고 모델링 하였다. 제안하는 방법의 검증을 위하여 상용 게임의 게임 로그를 이용하여 모델링하고 에러율을 확인하였으며 유효한 결과를 확인하였다.


As the industry develops, the technology used for games is also being advanced. In particular, AI technology is used to game automation and intelligence. These game player patterns are widely used in online games such as player matchmaking, generation of friendly or hostile NPCs, and balancing of game worlds. This study proposes a model generation method for game players. For model generation, attributes such as hunting, collection, movement, combat, crisis management, production, and interaction were defined, and patterns were extracted and modeled using decision tree method. To evaluate the proposed method, we used the game log of a commercial game and confirmed the meaningful results.

URL :
https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE10894030