제목 : 3D 얼굴 모델 기반의 GAN을 이용한 게임 캐릭터 회전 기법
저자 : 김한동, 한종대, 양희경, 민경하
초록 :
본 논문은 게임 캐릭터 얼굴 일러스트레이션에 적용할 수 있는 안면 회전 기술(Face rotation) 기술을 제안한다. 기존의 진행된 연구들은 실제 사람의 얼굴 데이터에 대해서로 데이터를 한정하였으며 방대한 양의 데이터를 필요로 하였고 합성된 결과물이 좋지 못한 문제가 있었다. 본 논문에서는 기존 연구들의 존재하는 문제를 해결하기 위해 다음과 같은 방법을 도입하였다. 첫째, 입력 이미지가 갖고 있는 특징을 입힌 3D 모델을 회전시키고 다시 2D 이미지로 렌더링하여 학습 및 평가에 필요한 데이터 셋을 구축하였다. 둘째, 3D 모델을 통해 구축된 데이터에서 다양한 각도의 특징을 학습할 수 있는 적대적 생성 모델(Generative Adversarial Networks)을 설계하여 입력된 이미지를 원하는 각도로 합성할 수 있다. 논문에서는 실제 게임캐릭터 얼굴 일러스트레이션 합성 결과를 제시한다. 합성 결과를 통해 논문에서 제안하는 방법이 잘 동작함을 확인할 수 있다.
This paper shows the face rotation applicable to game character facial illustration. Existing studies limited data to human face data, required a large amount of data, and the synthesized results were not good. In this paper, the following method was introduced to solve the existing problems of existing studies. First, a 3D model with features of the input image was rotated and then rendered as a 2D image to construct a data set. Second, by designing GAN that can learn features of various poses from the data built through the 3D model, the input image can be synthesized at a desired pose. This paper presents the results of synthesizing the game character face illustration. From the synthesized result, it can be confirmed that the proposed method works well.
URL : https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE10573477
제목 : 3D 얼굴 모델 기반의 GAN을 이용한 게임 캐릭터 회전 기법
저자 : 김한동, 한종대, 양희경, 민경하
초록 :
본 논문은 게임 캐릭터 얼굴 일러스트레이션에 적용할 수 있는 안면 회전 기술(Face rotation) 기술을 제안한다. 기존의 진행된 연구들은 실제 사람의 얼굴 데이터에 대해서로 데이터를 한정하였으며 방대한 양의 데이터를 필요로 하였고 합성된 결과물이 좋지 못한 문제가 있었다. 본 논문에서는 기존 연구들의 존재하는 문제를 해결하기 위해 다음과 같은 방법을 도입하였다. 첫째, 입력 이미지가 갖고 있는 특징을 입힌 3D 모델을 회전시키고 다시 2D 이미지로 렌더링하여 학습 및 평가에 필요한 데이터 셋을 구축하였다. 둘째, 3D 모델을 통해 구축된 데이터에서 다양한 각도의 특징을 학습할 수 있는 적대적 생성 모델(Generative Adversarial Networks)을 설계하여 입력된 이미지를 원하는 각도로 합성할 수 있다. 논문에서는 실제 게임캐릭터 얼굴 일러스트레이션 합성 결과를 제시한다. 합성 결과를 통해 논문에서 제안하는 방법이 잘 동작함을 확인할 수 있다.
This paper shows the face rotation applicable to game character facial illustration. Existing studies limited data to human face data, required a large amount of data, and the synthesized results were not good. In this paper, the following method was introduced to solve the existing problems of existing studies. First, a 3D model with features of the input image was rotated and then rendered as a 2D image to construct a data set. Second, by designing GAN that can learn features of various poses from the data built through the 3D model, the input image can be synthesized at a desired pose. This paper presents the results of synthesizing the game character face illustration. From the synthesized result, it can be confirmed that the proposed method works well.
URL : https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE10573477